

ICML | 2022

Thirty-ninth International Conference on Machine Learning

A Closer Look at Smoothness in Domain Adversarial Training

Harsh Rangwani^{*}, Sumukh K Aithal^{*}, Mayank Mishra, Arihant Jain, R. Venkatesh Babu

Indian Institute of Science, Bangalore

* indicates Equal Contribution

Approacl

Results

Conclusio

Domain Adaptation

Images taken from Office-31 dataset.

Domain Adversarial Training (DAT)

Overall Objective: Task Loss + Adversarial Loss

Sharp vs Flat Minima

Converging to a flatter (smooth) region in loss landscape with supervised learning leads to effective **generalization on same domain** as compared to sharp minima.

We analyze the effect of smoothness (i.e. flatness) enhancement for **Domain Adversarial Training**.

Figure Credit: (Link)

Analysis of Smoothness of Task Loss

 $R^l_S(h_ heta) = \mathbb{E}_{x \sim P_S}[l(h_ heta(x),y(x))]$

Smoothness of Task Loss Is Beneficial

- Hessian of Source Risk (Task Loss) is used to analyze the loss landscape.
- Plot of spectral density of eigen values of Hessian is given below.

 $\lambda_{max} : maximum eigenvalue of the Hessian Tr(H): Trace of the Hessian Low <math>\lambda_{max}$ and low Tr(H) indicate convergence to smooth region.

Smoothness stabilizes Domain Adversarial Training

 As λ_{max} increases (decrease in smoothness of landscape), the training becomes unstable for SGD leading to a drop in validation accuracy.

Smoothness stabilizes Domain Adversarial Training

 As λ_{max} increases (decrease in smoothness of landscape), the training becomes unstable for SGD leading to a drop in validation accuracy.

• In the smooth DAT, the λ_{max} remains low across epochs, leading to **stable** and better validation accuracy curve.

Analysis of Smoothness of Adversarial Loss

 $d^\Phi_{S,T} = \mathbb{E}_{x \sim P_S}[\log(\mathcal{D}_\Phi(g_\psi(x)))] + \mathbb{E}_{x \sim P_T}\log[1 - \mathcal{D}_\Phi(g_\psi(x)))]$

Analysis of Smoothness of Adversarial Loss

Theorem 2 (Informal Remark): We show that for a class of functions (gradient lipschitz) that the discriminator is suboptimal between source and target domain, when smooth version of adversarial loss is used.

Analysis of Smoothness of Adversarial Loss

Theorem 2 (Informal Remark): We show that for a class of functions (gradient lipschitz) that the discriminator is suboptimal between source and target domain, when smooth version of adversarial loss is used.

Empirical: As the smoothness increases (p), the target accuracy decreases indicating that smoothing adversarial loss leads to suboptimal generalization.

54 (%) .⊆ 52 Accuracy 50 Target 48 46 DAT (Baseline) 0.0 0.2 0.4 Discriminator p value Increasing Smoothness \rightarrow

C) Art \rightarrow Clipart

Smooth Domain Adversarial Training (SDAT)

Sharpness-Aware Minimization (SAM) [1]

 $\min_{\theta} \max_{||\epsilon|| \le \rho} L_{obj}(\theta + \epsilon) \qquad \hat{\epsilon}(\theta) \approx \arg\max_{||\epsilon|| \le \rho} L_{obj}(\theta) + \epsilon^T \nabla_{\theta} L_{obj}(\theta) \\ = \rho \nabla_{\theta} L_{obj}(\theta) / ||\nabla_{\theta} L_{obj}(\theta)||_2$

Smooth Domain Adversarial Training:

Smooth Minima w.r.t task loss (Empirical Source Risk)

$$\min_{\theta} \max_{\Phi} \max_{||\epsilon|| \le \rho} \mathbb{E}_{x \sim P_S} [l(h_{\theta+\epsilon}(x), y(x))] + d_{S,T}^{\Phi}$$

[1] Foret, Pierre, et al. "Sharpness-aware minimization for efficiently improving generalization.", ICLR 2021.

Smooth Domain Adversarial Training (SDAT)

SDAT: Easy to Implement and Integrate

- SDAT can be easily integrated with various Domain Adversarial Training methods with only a few lines of changes in the code.
- SDAT leads to significant gain in the accuracy on the target domain on combination with domain adversarial methods.

```
class_prediction, feature = model(x)
task_loss = task_loss_fn(class_prediction, label)
task_loss.backward()
```

```
# Calculate \hat{\epsilon} (w) and add it to the weights optimizer.first_step()
```

```
# Calculate task loss and domain loss
class_prediction, feature = model(x)
task_loss = task_loss_fn(class_prediction, label)
domain_loss = domain_classifier(feature)
loss = task_loss + domain_loss
loss.backward()
# Update parameters (Sharpness-Aware update)
optimizer.second_step()
# Update parameters of domain classifier
```

```
ad_optimizer.step()
```

SDAT in Practice (Office-Home Dataset)

Method		Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Avg
ResNet-50 (He et al., 2016)		34.9	50.0	58.0	37.4	41.9	46.2	38.5	31.2	60.4	53.9	41.2	59.9	46.1
DANN (Ganin et al., 2016)		45.6	59.3	70.1	47.0	58.5	60.9	46.1	43.7	68.5	63.2	51.8	76.8	57.6
CDAN* (Long et al., 2018)		49.0	69.3	74.5	54.4	66.0	68.4	55.6	48.3	75.9	68.4	55.4	80.5	63.8
MDD (Zhang et al., 2019)	20	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
f-DAL (Acuna et al., 2021)	et-	56.7	77.0	81.1	63.1	72.2	75.9	64.5	54.4	81.0	72.3	58.4	83.7	70.0
SRDC (Tang et al., 2020)	NS	52.3	76.3	81.0	69.5	76.2	78.0	68.7	53.8	81.7	76.3	57.1	85.0	<u>71.3</u>
CDAN	Re	54.3	70.6	76.8	61.3	69.5	71.3	61.7	55.3	80.5	74.8	60.1	84.2	68.4
CDAN w/ SDAT		56.0	72.2	78.6	62.5	73.2	71.8	62.1	55.9	80.3	<u>75.0</u>	61.4	84.5	69.5
CDAN + MCC		57.0	76.0	81.6	64.9	75.9	75.4	63.7	56.1	81.2	74.2	63.9	85.4	71.3
CDAN + MCC w/ SDAT		58.2	77.1	82.2	<u>66.3</u>	77.6	<u>76.8</u>	63.3	57.0	82.2	74.9	64.7	86.0	72.2

SDAT in Practice (Office-Home Dataset)

Method		Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Avg
ResNet-50 (He et al., 2016)		34.9	50.0	58.0	37.4	41.9	46.2	38.5	31.2	60.4	53.9	41.2	59.9	46.1
DANN (Ganin et al., 2016)		45.6	59.3	70.1	47.0	58.5	60.9	46.1	43.7	68.5	63.2	51.8	76.8	57.6
CDAN* (Long et al., 2018)		49.0	69.3	74.5	54.4	66.0	68.4	55.6	48.3	75.9	68.4	55.4	80.5	63.8
MDD (Zhang et al., 2019)	20	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
f-DAL (Acuna et al., 2021)	et-	56.7	77.0	81.1	63.1	72.2	75.9	64.5	54.4	81.0	72.3	58.4	83.7	70.0
SRDC (Tang et al., 2020)	NS	52.3	76.3	81.0	69.5	76.2	78.0	68.7	53.8	81.7	76.3	57.1	85.0	71.3
CDAN	Re	54.3	70.6	76.8	61.3	69.5	71.3	61.7	55.3	80.5	74.8	60.1	84.2	68.4
CDAN w/ SDAT		56.0	72.2	78.6	62.5	73.2	71.8	62.1	55.9	80.3	<u>75.0</u>	61.4	84.5	69.5
CDAN + MCC		57.0	76.0	81.6	64.9	75.9	75.4	63.7	56.1	81.2	74.2	63.9	85.4	71.3
CDAN + MCC w/ SDAT		58.2	77.1	82.2	<u>66.3</u>	77.6	<u>76.8</u>	63.3	57.0	82.2	74.9	64.7	86.0	72.2
TVT (Yang et al., 2021)		74.9	86.8	89.5	82.8	87.9	88.3	79.8	71.9	90.1	85.5	74.6	90.6	83.6
CDAN	ViT	62.6	82.9	87.2	79.2	84.9	87.1	77.9	63.3	88.7	83.1	63.5	90.8	79.3
CDAN w/ SDAT		69.1	86.6	88.9	81.9	86.2	88.0	<u>81.0</u>	66.7	89.7	86.2	72.1	<u>91.9</u>	82.4
CDAN + MCC	-	67.0	84.8	90.2	83.4	87.3	89.3	80.7	64.4	90.0	86.6	70.4	91.9	82.2
CDAN + MCC w/ SDAT		<u>70.8</u>	87.0	90.5	85.2	<u>87.3</u>	89.7	84.1	<u>70.7</u>	90.6	88.3	75.5	92.1	84.3

SDAT in Practice (Office-Home Dataset)

Method		Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Avg
ResNet-50 (He et al., 2016)		34.9	50.0	58.0	37.4	41.9	46.2	38.5	31.2	60.4	53.9	41.2	59.9	46.1
DANN (Ganin et al., 2016)		45.6	59.3	70.1	47.0	58.5	60.9	46.1	43.7	68.5	63.2	51.8	76.8	57.6
CDAN* (Long et al., 2018)		49.0	69.3	74.5	54.4	66.0	68.4	55.6	48.3	75.9	68.4	55.4	80.5	63.8
MDD (Zhang et al., 2019)	20	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
f-DAL (Acuna et al., 2021)	et-	56.7	77.0	81.1	63.1	72.2	75.9	64.5	54.4	81.0	72.3	58.4	83.7	70.0
SRDC (Tang et al., 2020)	NS	52.3	76.3	81.0	69.5	76.2	78.0	68.7	53.8	81.7	76.3	57.1	85.0	71.3
CDAN	Re	54.3	70.6	76.8	61.3	69.5	71.3	61.7	55.3	80.5	74.8	60.1	84.2	68.4
CDAN w/ SDAT		56.0	72.2	78.6	62.5	73.2	71.8	62.1	55.9	80.3	<u>75.0</u>	61.4	84.5	69.5
CDAN + MCC		57.0	76.0	81.6	64.9	75.9	75.4	63.7	56.1	81.2	74.2	63.9	85.4	71.3
CDAN + MCC w/ SDAT		58.2	77.1	82.2	<u>66.3</u>	77.6	<u>76.8</u>	63.3	57.0	82.2	74.9	64.7	86.0	72.2
TVT (Yang et al., 2021)		74.9	86.8	89.5	82.8	87.9	88.3	79.8	71.9	90.1	85.5	74.6	90.6	83.6
CDAN	ViT	62.6	82.9	87.2	79.2	84.9	87.1	77.9	63.3	88.7	83.1	63.5	90.8	79.3
CDAN w/ SDAT		69.1	86.6	88.9	81.9	86.2	88.0	<u>81.0</u>	66.7	89.7	86.2	72.1	<u>91.9</u>	82.4
CDAN + MCC		67.0	84.8	90.2	83.4	87.3	89.3	80.7	64.4	90.0	86.6	70.4	<u>91.9</u>	82.2
CDAN + MCC w/ SDAT		<u>70.8</u>	87.0	90.5	85.2	<u>87.3</u>	89.7	84.1	<u>70.7</u>	90.6	88.3	75.5	92.1	84.3

Performance on Large Scale DomainNet

Results are shown with CDAN w/ SDAT.

The number in the parenthesis refers to the increase in accuracy with respect to CDAN.

Target (\rightarrow) Source (\downarrow)	clp	inf	pnt	real	skt	Avg
clp	-	22.0 (+1.4)	41.5 (+2.6)	57.5 (+1.5)	47.2 (+2.3)	42.1 (+2.0)
inf	33.9 (+2.3)	-	30.3 (+1.0)	48.1 (+4.5)	27.9 (1.5)	35.0 (+2.3)
pnt	47.5 (+3.4)	20.7 (+0.9)	-	58.0 (+0.8)	41.8 (+1.8)	42.0 (+1.7)
real	56.7 (+0.9)	25.1 (+0.7)	53.6 (+0.4)	-	43.9 (+1.6)	44.8 (+1.0)
skt	58.7 (+2.7)	21.8 (+1.1)	48.1 (+2.8)	57.1 (+2.2)	-	46.4 (+2.2)
Avg	49.2 (+2.3)	22.4 (+1.0)	43.4 (+1.7)	55.2 (+2.2)	40.2 (+1.8)	42.1 (+1.8)

SDAT improves over SOTA i.e. TVT^[1] and CDTrans^[2]

	түт	CDTrans	SDAT
Need of additional modules/networks			*
Memory requirement (For training)	~35 GB	~26.3 GB	<12 GB
Pretraining	ImageNet-21k	ImageNet-1k	ImageNet-1k
Accuracy (Office-Home)	83.6%	80.5%	84.3%
Accuracy (VisDA-17)	83.2%	88.4%	89.8%

[1] Yang, J., Liu, J., Xu, N., & Huang, J. (2021). TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation. arXiv. <u>https://doi.org/10.48550/ARXIV.2108.05988</u>

[2] Xu, T., Chen, W., Wang, P., Wang, F., Li, H., & Jin, R. (2021). Cdtrans: Cross-domain transformer for unsupervised domain adaptation.ICLR 2022.

Conclusion

TLDR: Smooth Minima with respect to task loss leads to effective generalization on the target domain.

- \rightarrow SDAT is effective across tasks and benchmarks.
- \rightarrow Can be combined easily with any of the domain adversarial methods.
- \rightarrow Very easy to integrate in any framework with few lines of code.
- \rightarrow Provides consistent improvement across both Convnets and Vision-Transformer based Architecture.

Thank You

Code: <u>https://github.com/val-iisc/sdat</u> Paper: <u>https://arxiv.org/abs/2206.08213</u>