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Domain Adaptation

Motivation Overview Approach Results Conclusion

Images taken from Office-31 dataset.
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Domain Adversarial Training (DAT)

Motivation Overview Approach Results Conclusion

Eg. Cross entropy

Overall Objective: Task Loss + Adversarial Loss



Sharp vs Flat Minima

Motivation Overview Approach Results Conclusion

Converging to a flatter (smooth) region in loss landscape with supervised learning leads to 
effective generalization on same domain as compared to sharp minima. 

Figure Credit: (Link)

We analyze the effect of smoothness (i.e. flatness) enhancement for Domain Adversarial Training.

https://research.samsung.com/blog/ASAM-Adaptive-Sharpness-Aware-Minimization-for-Scale-Invariant-Learning-of-Deep-Neural-Networks


Analysis of Smoothness of Task Loss

Motivation Overview Approach Results Conclusion



Smoothness of Task Loss Is Beneficial

Motivation Overview Approach Results Conclusion

● Hessian of Source Risk (Task Loss) is used to analyze the loss landscape.
● Plot of spectral density of eigen values of Hessian is given below.

λmax : maximum eigenvalue of the Hessian Tr(H): Trace of the Hessian
Low λmax and low Tr(H) indicate convergence to smooth region.

.



Smoothness stabilizes Domain Adversarial  Training 

Motivation Overview Approach Results Conclusion

● As λmax increases (decrease in 
smoothness of landscape), the training 
becomes unstable for SGD leading to a 
drop in validation accuracy.



Smoothness stabilizes Domain Adversarial  Training 

Motivation Overview Approach Results Conclusion

● As λmax increases (decrease in 
smoothness of landscape), the training 
becomes unstable for SGD leading to a 
drop in validation accuracy.

● In the smooth DAT, the λmax remains low 
across epochs, leading to stable and 
better validation accuracy curve.
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Analysis of Smoothness of Adversarial Loss
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Theorem 2 (Informal Remark): We show 
that for a class of functions (gradient 
lipschitz) that the discriminator is 
suboptimal between source and target 
domain, when smooth version of 
adversarial loss is used.



Analysis of Smoothness of Adversarial Loss
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Theorem 2 (Informal Remark): We show 
that for a class of functions (gradient 
lipschitz) that the discriminator is 
suboptimal between source and target 
domain, when smooth version of 
adversarial loss is used.

Empirical: As the smoothness increases 
(ρ), the target accuracy decreases 
indicating that smoothing adversarial loss 
leads to suboptimal generalization.

Increasing Smoothness →



Smooth Domain Adversarial Training (SDAT)

Motivation Overview Approach Results Conclusion

Sharpness-Aware Minimization (SAM) [1]

Smooth Domain Adversarial Training:
Smooth Minima w.r.t task loss (Empirical Source Risk)

[1] Foret, Pierre, et al. "Sharpness-aware minimization for efficiently improving generalization.", ICLR 2021.
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SDAT: Easy to Implement and Integrate

Motivation Overview Approach Results Conclusion

● SDAT can be easily integrated with 
various Domain Adversarial Training 
methods with only a few lines of 
changes in the code.

● SDAT leads to significant gain in the 
accuracy on the target domain on 
combination with domain adversarial 
methods.



SDAT in Practice (Office-Home Dataset)
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Performance on Large Scale DomainNet 

Motivation Overview Approach Results Conclusion

Results are shown with 
CDAN w/ SDAT.

The number in the 
parenthesis refers to the 
increase in accuracy 
with respect to CDAN.



SDAT improves over SOTA i.e. TVT [1] and CDTrans [2] 

Motivation Overview Approach Results Conclusion

[1] Yang, J., Liu, J., Xu, N., & Huang, J. (2021). TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation. 
arXiv. https://doi.org/10.48550/ARXIV.2108.05988

[2] Xu, T., Chen, W., Wang, P., Wang, F., Li, H., & Jin, R. (2021). Cdtrans: Cross-domain transformer for unsupervised domain 
adaptation.ICLR 2022. 

TVT CDTrans SDAT

Need of additional 
modules/networks

Memory requirement
(For training)

~35 GB  ~26.3 GB <12 GB

Pretraining ImageNet-21k ImageNet-1k ImageNet-1k

Accuracy (Office-Home) 83.6% 80.5% 84.3%

Accuracy (VisDA-17) 83.2% 88.4% 89.8%

https://doi.org/10.48550/ARXIV.2108.05988


Conclusion

Motivation Overview Approach Results Conclusion

TLDR: Smooth Minima with respect to task loss leads to effective 
generalization on the target domain.

→ SDAT is effective across tasks and benchmarks.

→ Can be combined easily with any of the domain adversarial methods.

→ Very easy to integrate in any framework with few lines of code.

→ Provides consistent improvement across both Convnets and 
Vision-Transformer based Architecture.



Thank You

Code: https://github.com/val-iisc/sdat
Paper: https://arxiv.org/abs/2206.08213

https://github.com/val-iisc/sdat
https://arxiv.org/abs/2206.08213

